EMCC レポート

不要電波問題対策協議会

第 6 号
平成 3 年12月発行
EMCC レポート第 6 号 目次

○ 不要電波と必要電波（鈴木 務）………………………………………………………………… 1
○ 不要電波問題対策協議会第 9 回講演会
 日欧不要電波問題セミナー …………………………………………………………………………… 2
 欧州の EMC に関する動向（M.C. Vrolijk）……………………………………………………… 3
 「パネルディスカッション」：EMC の今後について
 （M.C. Vrolijk、佐藤 利三郎、高木 相、菊池 神一、岡村 万次夫、杉浦 行 ………………… 13
○ アメリカにおける EMC の概要（仁田 周一）……………………………………………………… 20
○ 韓国における EMC 事情と旅行記（徳重 寛吾）……………………………………………… 22
○ 平成 2年度における不要電波障害の申告状況について ………………………………………… 27
○ 編集後記
不要電波と必要電波

電気、電子機器から種々の電磁波を発生している。その中には雑音や干渉波のように不要なものと信号のように必要なものが含まれている。不要か必要かは利用者が勝手に決めることで主観的である。雑音や干渉波はEMC研究者にとっては信号である。電波の発生源は無数にある。利用者も無数にいる。EMC技術の必要性は無数にあり、エンドレースでもある。EMC関係者にとって仕事が無限に続くことは幸福でもあり不幸でもある。

近年になってEMCフィーバーといえる程、EMC状況は燃えている。展示会や研究会には人々が集まり、知識を求めている。昔の状況が続いてあるが、最近になって人々は少しずつ、冷静を取つしつつある。これはイミュニティについてのガイドラインや规格を検討する段階に達したからである。
イミュニティは個々の利用者にとって到来波が不要か必要（許容）かを決定する能力である。従来から個々の利用者は現場においてEMC対策をとってきた。秘密他の技術を競合してきた。イミュニティの国際的ガイドラインや规格は、公平で統一的な考え方を導入しようとするものであるが現場との距離はなかなか近づかない。

イミュニティの評価は測定方法を決め、印加する電圧、電流、電磁界のレベル、方向、偏波などを決め、許容できる出力レベルや動作から判定している。これらは主として国際において規定した方法に従っている。無数の電気・電子機器の種類があり、無数の利用者が無数の場所で利用しているのに有限の方法でしかイミュニティ評価が出来ない。そこで経過事としてのイミュニティ評価が行われることになる。

元来EMCは特別な学問ではない。電気回路、磁気学などの基礎理論の組合せである。問題は無限にある境界条件をいかによく整理して解くかということにある。イミュニティ評価の規格は主として国際的なIECやCISPRなどによるものであるが、これらを生み出した根拠についての知識が知らされないで従うことは収束のあり学問に従事している者にとっては消化不良となっている。解析方法は単純モデルを考えて理論解析をなし、組合せで複雑化する方法がとられるが、EMCのように無数の組合せが存在するとゴールが見えなくなり、手出せなくなる。このようなミクロ的手法と国際規格のようなマクロ的手法とのギャップを埋めるのにファジー理論や人工知能手法が有用かもしれない。不要電波か必要電波かの分類だけで判断をする評価の方法がEMCに導入されると無限に悩まされることから軽減されるかも知れない。
不要電波問題対策協議会第9回講演会

日欧不要電波問題セミナー

不要電波問題対策協議会では、昨年に引き続き、海外(オランダ)からEMCに関する専門家(M.C. Vrolijk氏)を招聘し、平成3年9月11日(水)に日本プレスセンターホールにおいて、第9回講演会「日欧不要電波問題セミナー」を開催いたしました。

講演をいただいたM.C. Vrolijk氏は、オランダのアイトホーヘンにあるPhilips社に勤務され、対外規格マネージャーとして、国内外の規格との調整を行っているかたわら、CENELEC(欧州電気技術規格調整委員会)110A小委員会の議長及びCISPR-Fの幹事を務められており、ECにおけるEMC問題の一任者として御活躍されている方です。

講演に引き続き、Vrolijk氏、佐藤利三歴氏(東北学院大学工学部長、不要電波問題対策協議会副会長)、高木相氏(東北大学工学部教授、CISPR国内委員会委員長)、菊池雅士氏(郵政省電気通信局電波部監視監理課長)、岡村道夫氏(即機械電子検査検定協会理事)、杉浦行氏(郵政省通信総合研究所標準測定部長)の6名のEMC関係専門家によるパネルディスカッションを開催いたしました。

パネルディスカッションではEMCの教育、イミュニティ及び放射について、EC各国と日本の中状況を相互に述べていただくとともに、会場にお越しのお客さまから貴重な御意見をいただき、それぞれについての意見交換が行われました。

講演会の参加者も200名を超え、好評を博したと共に、日本におけるEMC問題に対する関心が深まっているものと伺えます。

なお、セミナー終了後に開催したレセプションパーティーにおいても多数の方の御参加をいただき、Vrolijk氏との交流が図られました。

本紙面をお借りして、セミナー及びレセプションに御参加いただきました皆様に感謝すると共に、ここにセミナーの概要を御紹介いたします。
欧州のEMCに関する動向

I. 欧州指令の動向

まず、欧州連合内の各国における法律の各省は、欧州指令の規定に基づいて制定されている。EU各国の指導者は年に1回、欧州委員会で開催される理事会において、各国の指令を検討する。ここでは、各国の提案に基づいて、欧州指令の修正案が作成される。これらの提案は、欧州理事会において審議されるが、結論には至らない。

II. 欧州指令の影響

欧州指令は、国内法を上回る効力を有し、各企業の製品が欧州市場に出荷される際には、欧州指令に準拠するものとされる。しかし、指令の実施には、各国のモニタリング機関による監視が必要である。欧州指令は、安全、環境、健康などの観点から検討され、各企業が遵守すべき基準を定めている。

III. 欧州指令の将来

欧州指令は、今後も発展を遂げると考えられている。技術の進歩に伴い、新たな検討課題が生じるでしょう。欧州エネルギー指令や、光熱利用等に関する指令は、今後も重要な役割を果たすものと考えられる。
中では、代表者が入っているので影響力が大きいと言えます。
また、欧州議会の議員は、国民が選挙を行って決定するため、どちらかというと消費者志向となります。しかし最終的にはこの議案の意見でEC委員会に入り、そこで修正等が行なわれます。そしてコメントを考慮し、または拒否されることも有り得るさらなる審議を行います。
その後、草案を各国政府の代表者に渡し、政府の専門家の検討を依頼します。そして専門家による技術的検討を経て常任代表者会議へ送ります。この常任代表者会議というのは、専門家の委員会ですが、関係者会議の丁度のレベルに当たりますから、大臣にどのように投票するべきかアドバイスを行います。その後に再び関係者会議が行なわれ、共通の見解がまとめられ、公表されます。そしてそれが指令になります。
欧州議会においてコメントが特に無い場合、自動的にその草案が指令としても正式に認められます。その中には時間的な制限等も含まれており、各加盟国には通常1年間あるいは1年半という時間が与えられ、その猶予期間の間に草案を自国語に翻訳して、自国の法律という形でそれを採択、改正する時間を与えられます。その後にもう1年間、発効するまでの猶予期間として与えられますが、これが問題が生じる可能性があります。
つまり最終期限だけが決まっているからです。このため最終的に有り得る状況としては次のような場合が考えられます。
ある国において、政府の専門家グループが非常に迅速に作業を進め、2～3ヶ月のうちに準備ができ、国内法も整備できたかしきれない。しかし他のEC加盟国では、最終期日直前になってやっと準備ができただけ、あるいは遅れてしまって後になってできたということになるかもしれない。従ってその間は、国内法のパラッキは存在したままということになりますが、製造メーカーとしては将来的にどのようになるかという動向は知っていることになります。
2 EMCC指令 [89/336/EEC] について
ここで、EMC指令 [89/336/EEC] に関し若干触れてもみたいと思います。
まず全ての電気製品機器が対象になるということであり、これには無線エネルギーを発生するもの、ある

いは放射エネルギーにより影響を受けるもののが対象となります。ほとんどの電気・電子機器は何れかの種類に入るものですが、一つだけ例外があります。それは白熱灯です。

通常は、非常に早いエレクトロニクス時計や複雑な医療機器など、エレクトロニクスが使われた全ての機器はこの指令の対象となります。もちろん、少々例外はありますが、例えば無線送信機です。全ての国では、無線送信機について強制的に試験をしなければなりません。
　もう一つは、TTE指令で廃却されたもので、これは電気装置の端末装置部であり、EMCの指令から部分的に除去されています。
次に、要件に関してですが、放射に関する基準とイミュニティに関する基準があります。そして、機器が証証を受けるため、メーカーあるいは輸入業者は、それらの機器を市場に持っていく、その時に製造業者の宣言を付ければ良い訳です。
これにはもう一つ新しい制約的な試験というものがあります。これは認可試験の試験機関が行なうことになります。しかし、こうした正しい試験を自分で実施することはメーカーの責任です。
もう一つの手段は、独立した第三者の機関で試験を実施し、報告書を作成してもらうことです。しかし試験成績書は事前に提出する必要はありません。例えば日本人であってもヨーロッパに来て、一枚の紙を直し提出していただければ容易に日本製品を輸入できます。つまり、ある型式番号のものが必要要件を満たすこと
を記載し、日付とサインがあればそれで十分です。
これについては、製造業者が責任を持ち、製造者宣言を出さなければならない。そうすれば、全てのEC加盟国政府は、警察機能のものを要する各市場に行き、製品を時々手に入れチェックを行ない、それらの機器が製造業者宣言を遵守し、また合致していないということになれば、サインをした人が問題となります。勿論それに携わった輸入業者も問題となる訳です。
標準規格が無い場合には、状況はもっと複雑になります。つまり規格が無い場合は、いつも認可試験試験機関に行かなければなりません。これらの要件はECで定められているものでありますが、第3者の試験機関によって試験を行う必要があります。これは機器の種類によって試験を行い、測定項目を明らかにして技術的宣言を書いてもらいます。その時はメーカー側の
技術的ファイルの中の製品に関する記述、あるいは取扱説明書、また製造業者が既に行なった様々な測定値、例えばEMCに関するフィルター等の測定値等そういった全てを記載したものを加盟国の一つで提出しなければなりません。

つまり、ヨーロッパにおいては、輸入業者はEMCに関する一連の書類を備えておかないでなりません。これは日本語ではまだであり、言語は全てEC加盟国で認められている中的一つである必要があります。その技術文書が9ヶ国語全てである必要は無くその内の1ケ国語だけで良い訳です。

3 TTE指令(91/263/EEC)について

今年の5月に電気通信端末装置に関して特別なTTE指令(91/263/EEC)が採択されました。これは日本の郵政省にも送付いたしたしております。この指令の中では特に電気通信端末装置に関連した要求事項が網羅されており、従ってこの指令で全てのEMCの要求がカバーされている訳ではありません。例えば皆さんの会社で簡単な電子メモ付きの電話機を開発したとします。そうすると電気通信機能は、第三者が試験しなくてはなりませんが、電子メモ機能は電気通信機能ではないので機器の一部と見なされ、EMC指令の適用となります。従って電気通信機能の一部に試験が強制されますが、電子メモ機能に関しては、製造業者または輸入業者が製造者宣言をしなくてはなりません。

もう一つの例で自動料金番号電話機ですが、電話応答装置に時計が付いております。従って単にテーブルで話し合う方法を含むメモリーが持つだけではなく、何回およびメッセージが残されたかも表示されます。その場合に、電話機能は強制的な試験等が下されるが、他の機能に関しては電話端末機能ではなくので、これはTTEとEMC指令に分割され、両者が個別に適用されることになります。TTE指令中では、可能性として第三者の型式試験を回避することができます。これは国際的な品質評価があればのことです。

CENELECというのはフランス語の名称であり、欧州—電気—機器—技術—規格化委員会の略称です。

2つ目の機関はCENであり、これはISOに対応します。それからETSIがありますが、これは特に電気通信機器に関連しております。

CENELECは、18の加盟国で構成され、このうち12ヶ国がEC加盟国で、残りの6ヶ国（アイスランド、ノルウェー、スウェーデン、フィンランド、スイス、オーストリア）がEFTAからの加盟国です。

CENELECの標準化で特に重要な点としては、IEC規格との関係で、もしIECの規格が公布されたならば殆どどの国において、これが追加的な規格となります。製造業者はこの規格を使用しても良く、また無視しても良いものです。そのまま独自の国内規格に準拠することもできます。EC12加盟国においては、どれかの分野で既に12の規格が存在し、製造業者は長年に渡りこの規格に従ってきています。どの製造業者も独自の製造過程を変更してまでIEC規格に準拠しようとはしない訳です。

そのため、18カ国の標準化機関が合意に達し、即ちIEC規格が公布された後で、これも同様に重要なものであるのなら、各国の標準化機関は、全ての既存の相互の相異なる規格は撤回することになりました。これは整合（一致）の過程であり、この12ヶ国+EFTAの6加盟国の間で対立する内容が無くなる（整合）ということです。それ以降はどの国も同じ状況となります。

多くの加盟国（ドイツ、フランス、イギリス等）の法律においては、独自の国内規格を制定しております。しかしここで国内規格が撤回され、代わりにIEC規格が施行されることになると、各国の政府は、以前使われていた国内規格の代わりにIEC規格を参照し
て規則を変更しなければなりません。

最近になって、新たにポーランド、チェコスロバキア、そしてハンガリーが加盟国として発表されました。これらの国々はすぐに受け入れられている訳ではなく、現在待っているような状態です。そういう状態においては、低いレベルでのみ関連メンバーとして受け入れられています。その代わり、加盟国は低くても構わないです。そして全ての新しい規格を享受することができるということですが、しかし意志決定の過程に対する寄与は、他の加盟国と比べて低くていいということになります。

投票に関して、フランス、イギリス、ドイツ、イタリアの影響力は同等のものですが、他の加盟国は前者に比べ低めです。

2 ETSI

ETSIというのは、欧州電気通信規格協会で欧州の電気通信主管庁が設立したものです。加盟国はCENELECの場合とは同じですが、数カ国加盟数が多く、全部で23ヶ国です。

CENELECの場合には18の標準化機関で構成されていますが、ETSの場合は違って、製造業者及び電気通信主管庁の組織が加盟し、現在270のメンバーを持っています。

当初、新しい規格の採択はメンバーによる投票によって行なわれていましたが、メンバーの数が非常に増え、投票が複雑になってしまいました。従って、ETSIもCENELECのように各国が国内規格を制定し、加盟決定のための意志決定を行うようになりました。

ETSIでは、71％を上回る投票が無いと規格は受け入れられません。CENELECではこの基準は少し違いますが、基本的な考え方は同じです。

CENELECとETSIの作業区分ですが、お互いの作業の重複は無いように決められています。ある一つのテーマにおいて、二つの異なる規格（CENELECとETSI）が出来ることはなく、作業区分を設けてあります。基本的に全ての無線通信装置はETSIの担当、基本規格及び共通規格はCENELEC、電気通信回線網の無線で接続されない電気通信端末装置（電気、光学的結合、光伝送）に関してはCENELEC、CATVはCENELECの担当です。

3 規格化の問題点

このような法制化の進捗状況、また標準化機関と规格化機関の相互協力をとても良いことだと思います。

しかし、製造業者の一員である私としてはかなりの問題があると思います。また、困難も多々あるのではないかという気がいたします。

最大の問題は、現在のところ、大半の機器においては具体的な既存の規格が無いことです。例えば、放射とイミュニティに関しては無い訳です。イミュニティというものは去年位から出てきましたが、限られた機器の分野にしかイミュニティ規格はありません。ですからEMC指令にだけの事をやってても、どの機器について、製造業者が試験機関に行き、強制的な型式試験をしなければなりません。また、10万以上の多項目に及ぶ試験が新しい型式試験には必要ですし、試験機関の数が少ないという実態がありますので、そこには組織運営上の大きな問題があると思います。つまり、製造業者は何年も待ち、新しい機器の試験をしてもらえるなければならないということです。

第2の問題としては、どの現象が関係するかということです。我々技術者としては多くの現象を考え、そしてそれぞれの現象が別々に発生することもあります。しかし、同時に複数の現象が起きた場合どのように対処するのでしょうか。つまり、どの現象がイミュニティに重要なものとして選択するのかもという点が、まだ大きな課題として残っています。

第3の問題としては、現在まで製造業者は、イミュニティに関して殆ど経験が無かったということです。例えば過去にユーザーからの苦情がありました。これは具体的には特定の機器のみに限っていました。また、一般的の人々の中でイミュニティの問題（例えば、掃除機のイミュニティや、電磁界による影響力等）について知識のある方は殆どいません。

掃除機が実際に、電磁界に関して試験あるいは調整すべきかどうか、そのことも良く分からないのです。

さらに、掃除機を電磁界に関して試験を行うことは、本当に意味があるのでしょうか。こうした課題、問題が残っており、各製造業者がそうした問題に直面しています。

それからもう一つ大きな問題が残っております。欧州は非常に広大な地域です。それで各国で違った伝統があります。皆さんの大半もご経験があると思いますが、強制型式試験の解釈の問題があり、イギリス、ド
イツ、デンマーク等のヨーロッパ北部の地域と、ヨーロッパ南部の地域（ギリシャ、スペイン、ポルトガル、イタリア等）は、その運用や解釈についてかなり異なります。今後もこの問題は続くことでしょう。

更に伝導性妨害波に関して問題があります。これは、電源ケーブルと機器の電源端子のみに限定した現象で、信号に関して（エネルギーの供給に関して）特にネットワークにおける信号の問題があります。例えば街路灯を点けるような信号を与える場合ですが、信号方式は国によって異なります。国によって特別な周波数（2kHz〜12kHz）を使用しますし、電圧も国によってバラバラで、また電圧変動の問題もあります。

電圧低下が生じた場合、機器が独自の規定仕様、まだ機能を維持できるのか、照会機器のどのような場合は、この答えは明らかです。例えば白熱灯について供給電圧が下がった時、多くの技術者は正確に照度の低下のレベルを計算できるでしょうか。そして、供給電圧が上がった場合の照度も計算できる訳です。しかし蛍光灯の場合はもっと複雑になります。というのは、電圧が下がる時間が照度は絶えています。そしておよそ15分間、温度が下がって点灯できる状態になるまで待たなければならないように色々の違いがありま

それからアンバランスの問題、電力周波数変動の問題、DC-AC 回線網における直流の問題及び高調波の問題等があります。この他に何かあるかと思います。

更に複雑なものは放射妨害波現象があります。例えば電界・磁界、そして遠方電界・近傍電界についての問題です。また、持続波（AM 及び FM 変調）そしてパルス波についての問題です。周波数帯域についても各国で様々な取り扱いがなされています。殆どの国において電界測定は 150kHz 以上から始めますが、ドイツでは 9kHz から始まる訳です。理論的には光領域まで上げることができ、或いは 400GHz で止めることもできるでしょう。例えばITU に則って無線周波数帯の最後のところで止めることもできます。しかしながら、そのような高い周波数を測定できる機器が無いため、そのようにあまり上げることはナンセンスかもしれません。ですから、最高周波数として測定すべき値というのは未だ定義されていない訳です。

また、偏波面が偏、横そして円形のものがあるでしょう。それから物理的な方向も重要です。機器の試験をするには、前後方向、さらに上下方向ということもあります。つまり機器の置く方向によって動作が違ってくると思います。

アンテナを使用する場合には FCC の規制があり、空中線の高さを 1〜4m の範囲で変化させなければならないということがありますが、これが適切なかどうか。全ての試験（例えば、1mm の単位変いはもっと小さい単位でなしえるのであれば、何年も試験に時間を費やしてしまう。）を実施するのが適切なのでしょうか。測定場所として、サイト（金属プレート）を使用するべきか電波無反射室（電波吸収材で囲まれた場所）を使用するべきか、そのような問題もありますし、テーブルトップの機器がフロアスタンドの機器かという問題もあります。これは地上との結合度合いの違いがあるです。

それから校正の問題もあります。つまり同一の校正の方法に合意できないのであれば、法律と供試機器が同じであっても校正方法自体が異なるため、結果は違ってしまいます。

また、試験を行う際の機器の配置の問題があります。例えば配置は放射妨害波測定に関して最大のものを想定すべきか、あるいは影響を受けるという点でイミュニティに関して最大のものを想定すべきかについてです。それから周波数に対応して配置（接続ケーブル等）を変えるべきでしょう。相互接続のためのケーブルを二つのユニット間で考える訳ですが、これは周波数によって最適化する必要があるです。これもナノセンシズと言いますが。そんな事をすれば、時間もお金もかかり過ぎてしまいます。これは非常に複雑な問題です。

イミュニティは非常に複雑な問題で、その現象の選択方法は次のような形であるべきです。まず、製造業者の要求として、ある現象を標準化された測定条件下で試験するべきということが言われています。そうでなければメーカーは受け入れられないということになります。我々メーカーとしては、現実の機器における動作の話しているのではなく、試験は実験室の中で実施しただけで、適切に再現性がある試験ができるという事が望ましい訳です。それからもう一つ期待している事は、現象に関する要件は一問題に一のみ話したいだけで、複数の現象を組み合わせたものは検討したくありません。複数を組み合わせてしまうと情報が増え過ぎてしまい、試験はもっと複雑になります。
私供にとって試験は、再現性がってのみ受け入れられるのです。

私ごとですが、幾つかの政府の関係者と話をしましたが、我々が長年に渡り再現性があると思われない方法で実施してきた国もありました。

試験は機器以上にお金がかかり過ぎず、安価で容易に適用できるなければならない訳です。

それから非常に大きな問題として、前述の機器等に関し機能レベルの定義（どの位の機能レベルを維持すべきか）が非常に困難です。時には機能レベルの定義ができない事もあります。そこで動作機能の劣化をどの程度許容できるかを考えなくてはなりません。

もう一つの問題は、全ての運用状態において試験を実施しなければならないということです。簡単な洗濯機の場合はどうでしょう。それは10のプログラムがあります。そうすると様々な現象を試験しなければならないことになります。つまり10の形態の運用全てを試験すると、洗濯機一台で何ヶ月も試験に期間を要ししまい、ばかげています。

4 現行の欧州規格とその問題点

低い周波数の妨害波について話したいと思います。そして现行の欧州規格についても話したいと思います。

ここでの問題は、どの基準・規格が既に存在するのか。そしてEMCの指令として既に存在するかどうか、また部分的に電気通信端末装置用として存在するかどうかです。

低周波の試験について考える場合、IEC-555-2があります。そしてそれに修正の1があります。お気付きのようにIECの2は、アメンドメントの2も採択されておりますが、これはCENELECでは却下されました。欧州規格においては、60555-2はIEC-555-2+アメンドメントの1のみが述べられておりますが、これは、今までのところ家庭用電気機器を対象としています。もし、私の作っているものが、電気通信機器であるということであれば、全く高調波は関係ないということになりますが、この規格の作成段階で変更があり、高調波と電圧変動に関して家庭用電気機器のみならず、電源に接続される消費電力が3.5kW以内のもの全てが対象になることとなりました。電源に機器が接続されるということであれば、将来的には高調波及び電圧変動に関する要件を遵守しなくてはいけなくなれる訳です。

次に無線周波妨害に関してですが、CISPR規格11、13、14、15、22については、皆さん御存知のことと思います。これらの規格は全ではもう既に欧州規格として受け入れられており、そしてEMC指令として発効することになります。情報技術装置をヨーロッパ各国に輸出する場合にはEN55022に準拠しなくてはなりません。

次にイミュニティ規格に関してですが、今のところ欧州で受け入れられている唯一の規格はEN55020です。これもCISPR規格20に関連しておりますが、幾つかの違いがあります。何故ならこの規格はCISPRがラジオやテレビのイミュニティに取り組む前から実施されていました。この規格ですが、放送用受信機及び関連装置を網羅しておりますが、これは放送機能のみということです。先程の例ですが、ラジオやテレビや電話回線等は、この規格には記述されておりませんが、後にこうした問題が生じてくるかもしれません。EN55020にはこれからも扱われることでしょう。これは情報技術装置に関連しているからです。

これまでで、現行の規格の紹介を致しました。しかしこの規格の準拠を受ける製品の製造者はだいぶあります。いわゆるドラフトスタンダードであります。

まず、共通妨害波規格（Generic Emission）がありますが、これは新しい用語です。これを少し説明いたします。前述のとおり、まだまとまった規格が足りない訳です。そして標準化機関、製造業者及び政府当局は、数年前から1992年1月1日以前に全ての異なった製品に、各々の製品独自の規格を作成するのは無理であるという結論を出しています。そこで共通の見解をしたの全ての機器に適用できる一般的な要件で、特定の製品を対象としない規格が必要となり、今年の10月までに共通妨害波規格が配布されます。この実質的な内容は後で述べますが、もしこれが受け入れられることになると、全ての機器（装置）は、共通イミュニティ規格に準拠しなくてはなりません。

もし、メーカーとして、製造する機器（装置）がこれに準拠できないということになると、選択の自由は残っています。

国内委員会において活発に活動し、また独自の製品
のための特別な製品規格を開発する。或いは加盟国の一国が認定して、独立した権限のある機関に行っ
て、ついの製品は共通規格に準拠できない状況を説
明する訳です。例えば、非常に安価な機器（例えばカ
ードラジオ）と、Hi-Fi ラジオとを比較するわけには
いきません。そこで安価な使い捨ての機器（装置）
の場合には、この製品を（EN55020）に関して試験を実
施することもできない訳です。こんな簡単な事例で
安価な機器（装置）に関しては、独立した試験場を行っ
て状況を説明します。すると権限のある当局の機関と
しては、特定の製品規格がその製品に関しては無く、
そして共通規格は一般のものであるがその製品につ
いては適用が不合理であるとの結論が出れば、我々が
試験して、しかも Hi-Fi 仕様に従めていても
販売しても良いという結論が出される訳です。

共通規格は各々住宅／商業／軽工業環境用と工業環
境用の 2 種類があります。

それから、共通インターニュイティ規格があります。これ
も同様に住宅／商業／軽工業環境用と工業環境用の 2
種類があります。

住宅／商業／軽工業環境用は 10 月まで投票、そして
工業環境用の方は最初のドラフトが先月出たばかり
で、最初の討議が 10 月にプリュッセルで開催されま
す。従ってこの規格が受け入れられるまでに、あと約
2年かかる見込まれます。

また、情報技術装置に関してのインタニュイティ規格は、
二つの規格が現在投票中です。双方とも CISP-G で
討議されている規格と全く同じものです。最初の静電
気放電に関する規格は CISP-G（Central Office 10）
と同等です。それからもう一つ、放射電磁界に関して
は、CISP-G（Central Office 文書はまだ配布されて
いないが、15 番か 16 番なるはず。）がもんと告示
されるでしょう。

それから、ETSI では電気通信関係の機器に関して
作業を進めており、ISDN に対するインタニュイティ及び
エミッションの規格は各々、ETS-300-126、ETS-300-
127があります。ETS-300-127 については、物理的に
大型のシステムに関してのものです。もう既に申しま
したが、EMC 指令においては数つかの限られた項目が
除外されています。即ち、無線装置、通信機及び電気
通信等の数つかの分野です。

また、今後のところは EMC 指令に入っていませんが、
将来は特定の指令で個別に対応されることになりま
す。その一つは医療用機器です。

ここで少しアドバイスをさせて頂きたいためで
す。ヨーロッパに輸出しようという場合には、低周波
そして無線周波に注意しなくても、それぞれ一つ放射
妨害規格を選ばなければなりません。現在はあまり多
くの規格はありませんが、将来にはもっと多くの規格
が低周波の分野、そして無線周波の分野に出出てくる
でしょう。

二つめのアドバイスとしては、自分の製品に関連し
たインタニュイティの規格を絶えず見るように。特定の規格が
ある場合には、その方が共通規格を優先します。専用
の規格が自動的に共通規格を優先する訳です。

また、メーカーとしてのもう一つの問題として、新
しい規格が出てくると全ての規格に関して、規格の
変更のために、約 2 年間の移行期間が設けられています。
従って、例えば明治の段階で新しく修正されたも
のが告示されたならば、次の年には全ての要件を満たさ
なければならいうことではありません。移行期
間が 2 年間ありまですので、その間に開発、そして生産
ラインを変更し適合させることができ、新しい規格に
準拠させることができます。

そして、更に遠くでないのではなく、型式試験は
特定のサンプルによって行ないますが、多くの製品
を試験したことがありますと同一であるということを言わなけ
ればなりません。

従って別の品質評価を製造段階で行なわなくてはな
りません。自分のところのシステムで良いですが、
これで言う有かなになければならないのは、試験したサ
ンプルは、量産品を代表するものであると言わなければ
なりません。これが EN45014 です。

考慮事項ですが、今いろいろなものが作成されてお
りますので、メーカーとして気をつけなければならな
いのは、新しい情報をタイムリーに入手しなければな
らないということです。日本には EC 評議会がありま
すので、必ずこういった機関を通じて日本の業界、メ
ーカーが新しい変更等の情報に関して適時的情報を入
手して頑かなくてはなりません。それは、ある組織の
一人が知っているだけではダメです。なぜなら、組織
の全ての人しか知っていなければならないからです。

ここで組織として情報が適切な場所へ、例えば開
発、製造及び管理等へ到達するように確保しなければ
なりません。EMC の場合には、従々にして担当者が
決まっていることが多い訳です。殆どの企業におい
1 EN 55022 (CISPR 22)

まず最初に CISPR 22 は、皆さんにもお馴染みの規格であると思います。しかしこの規格を適用するためには幾つかの要因があることにお気付きのことと思います。

ITE すなわち情報技術措置という言葉の定義が満足できるものでないことがお分かりいただけると思います。例えばこの定義に電気通信端末装置が含まれるかどうかとすると、答えは出る通り議論が始まります。また一方で電気通信端末装置と外部に接続される装置というものを比較すると、その区別があまりません。

また、端子電圧測定に関する要求事項も決まっていません。これは長年に渡り議論されてきましたが、正確な進捗はありません。本当に直ちにこの答えが必要なのであります。

それから準絶対値測定（QP 値測定）ですが、これは時間がかかります。準絶対値というのは、特にオーディオ機器、放射用機器等の保護の観点からも重要な値です。イミュニティ問題に関して特にディジタル機器等を考えてもみますと、私の意見では、準絶対値測定よりも絶対値測定の方が適切であると思いません。しかし現在は準絶対値測定だけでなっております。

最悪の条件となるよう機器を配置して測定を行うことについてですが、これは技術的にナンセンスであると思います。これから妥協の産物であると思います。本当に配置の最適化を各測定波数毎に望むのであれば、非常にコスト及び時間がかかってしまうでしょう。

また、基準アンテナは、平面的なダイボールになっていますし、また電流電流波の使用に関する規定は現在のところありません。非常にお金がかかり、こうした試験場を、つまりオープンフィールドと同じ特性を持つものということで、まだ明確な規定は決められておりません。また、物理的に大型の装置に関しての規定もまだ明確化されておりません。

次に、伝導妨害波についてお話いたします。幾つかの許容値が出ております。周波数は 30MHz までで、最大端子電圧を務める値です。30MHz 以下では端子電圧をループで測定します。静電容量を通じて接地に至るまでを測定する訳です。そして電流がケーブルを流れることとなりますが、ケーブルからの放射の可能性があります。

30MHz から 1GHz までとすると放射妨害波がありま
すが、クラスAとB双方とも10mの距離測定するこ
toとなっております。ここでも準絶音値測定となって
おります。これはアンテナが1mから4mの高さで縦
横方向各自々に偏波面を変えて測定しております。また
この機器の測定に関しては、360度回転して測定しな
ければなりません。ですからもしこれを規定通り実施
すると、準絶音値で測定を行なうとすると時間がかか
り過ぎてしまいナンセンスなこととなります。このた
め一般的な慣行として製造メーカーは、迅速に絶音値
を測定し、特定のスポットだけチェックする形で測定
をする訳です。しかしもしかしたら最大放送は、前述
の測定で見失っているかもしれません。その点だけは
誰にも分からないこととなります。

2 ETS 300 127 (物理的に大型のシステムの放射妨
害波測定)

次にETS-300-127の話をいたします。

では、物理的に大型のシステムというのは、なぜこれ
が必要なのかというのを考えてみます。CISPR 22で
見ていただきますと、まず測定しなくてはいけないも
のはテストサイトに於いてのもの、そして設置場所に
おける測定です。そして非常に巨大な機器（例えば交
換機）の場合には、それを設置場所において測定をする
ことの方が良いようです。そうしないと最初にテストサ
イトで作らなくてはいけないし、また後でそれを設置
場所で作らなくてはならないということになります。

交換機が大きなビルの10階にあたったと想定しましょ
う。そうすると困難が生じます。つまり、10mの距離
においてこの機器の周辺を測定することは困難です。
これは空中にぶらさげる（ビルの外に）という
ことになります。これは測定する人にとっても安全上
問題があります。

ですからこのようなシステム（交換機等）の場合に
そうなのですが、物理的に大型という定義をしており、
これらの機器はモジュールで構成されるということを
想定します。つまり、同じグループで何回かそれを組
合せるという形（モジュール構造）を想定します。更
に物理的に大型のシステムというのは、その設備の時
点で完了していなければと考えます。もしかしたら1年、
2年、或いは5年後になって追加のモジュールとして
付け加えるかもしれないと思います。前述の交換機等
がそうなるでしょう。つまり加入者の数が増えること
により、更に交換機の規模を拡張する必要がでてきま
す。その時は同じモジュールがあってそれを幾つか
くっつければ良い訳ですから問題ありません。

それからもう一つ想定していますのは、物理的に大
型のシステムというのは、ターンテーブルに乗せると
は大き過ぎると思う訳です。優れた交換機であれば既
に大型ですから、ターンテーブルには乗せられないと
いうことになります。

ETSIにおいて、どうやってこういうものを試験す
るのか、そしてこの問題をどう対処するかを審議して
参りました。その結果、一番良い方法として考えられ
るのはまず最低の代表システムを定義するということ
です。少なくとも一つのモジュールを各タイプ毎に考
え、それを組み合わせることによって最初の代表的な
システムを何かを定義します。この最初のシステムを
使用して放射妨害波を測定し、そしてその機能を測定
する訳です。そして第二のステップとしては、一つの
モジュールを付け加えるということがあります。それ
を急速に変化するかもしれませんが、この測定をする
ば、もう一つのモジュールを更に追加した時には放射
妨害波が一般的に直線的に増大するのではなく、頭打
ちになるということを計算できる訳です。

そうであれば、更にどういう事を起こるのか予測も
できる訳です。

第2点目に、実験室でモジュールを別々に測定をす
るという方法があります。ここでの目的ですが、これ
は予測をする為の計算式を作ることにあります。これ
についてはもちろん理論であり、実際にには部分的にし
か実施されておりません。従ってこれはまだ草案とし
ての規格です。そして今後第1回目の結果が出てきた
後（11月頃）このような形のものが検討されることで
しよう。この種の研究は必要なことであると思いま
す。つまり大きなシステムの測定をする事は難しい
からです。特に多くの場合、CISPR-22に依って大型
システムの測定ができないからです。これが政府間
の当局において、そして顧客においても認められるこ
とが望まれます。

また他の規格に関して情報を持参したいと思いま
す。EN-60555-2に高調波に関する規格がありますが、
高調波というのは50Hzの主要周波数に関係がありま
す。機器のインピーダンスが不均衡の場合はもっと
複雑になります。この555-2の規格には、概説が出さ
れております。これは単なる草案であり、まだ審議さ
れているところです。CENELEC と同様ですし、また IEC-77A でも検討されています。

次回の IEC 及び CENELEC での投票において、このような考え方を受け入れられると思われます。つまり全ての ITE 機器のメーカーというのは、このような規定をしなければいけませんし、フィルターとか、或いは新しいデザインを設定する必要がある訳です。つまり、AC-DC コンバーターにそういう規格を設ける必要がある訳です。

私が知る限りでは、通常の AC-DC コンバーターというのは、このような要件は満たしません。ですからこの辺を注意して頂けたいと思います。

3 イミュニティ規格

次に イミュニティの基本規格ですが、これは IEC そして CENELEC で同じような状況となっております。つまり測定法が規定されている訳です。

IEC-65 においては次の規格が検討され、受け入れられました。いわゆる801の規格シリーズです。

一方 IEC-77 の方々でも、この技術委員会が IEC の中央から一般規格を作成するように要請されました。IEC-65 ではプロセス制御機器に関して策定しておりました。これら一連の規格（801-X）シリーズですが、IEC-TC-77 により、より一般的なものになります。即ち一般的なものとして単にプロセス制御機器にのみ対象となるのではなく、全ての装置で電源ケーブル回線網に接続可能なものが対象となる訳です。

いま801-1の要件で、皆さん皆畜気かもしれませんが将来的にこれが一般規格として（1000-4-X という形で）公認されることでしょう。IEC 1000-4-X でこのXの部分が1〜6までの数字に対応します。他の規格は既に作成中で、例えば7番（電圧変動に関しての規格）とか他にも作成中のもの8番（低周波電磁界に関しての規格）がありますが、もっと出てくるかもしれません。というのは、創造力がある分だけイミュニティ試験に関していくいろな現象が出てくるかもしれませんが。

それでは要求事項（欧州共通規格の要件）は何でしょうか。まず、共通規格から始めます。商業、住宅、そして軽工業環境に関していますが、これだけの要件の装置がカバーされます。一方、工場等環境の規格があ
「パネルディスカッション」：EMCの今後について

佐藤　ただ今まで、フローリックさんの御講演をいただき大変参考になったことと思います。

このフローリックさんの講演を参考にしながら、EMCの教育、イミュニティ、妨害波の各々の問題について6名のパネリストによるパネル討論会を開催したいと思います。

まず、最初に高木先生の方からEMCに関する教育、研究活動の状況についてお願いいたします。

(1) EMCA教育について

高木　フローリックさんの講演を聞きながら我が国の状況を客観的に眺めると、欧州は地理的に入り組んでおり動きも激しく長い歴史の積み上げを感じますが、我が国が明治になって欧州の文明を取り入れ、国際社会に寄与できるようになってから、まだ、20〜30年でございます。

立派なものを作るには、本当に人の為になる、利便性を提供するために制度を作り、そして使ってもらうという姿勢がないと欧州のような形になっていかないだろうと日頃感じておりましたが、今日の講演を聞いてその感をより強くいえました。

まず最初に、EMCに関する学会の活動について、IEEEでは、アンテナ関係、コンピュータ関係、CHMT (Component Hybrid Manufacturing Technology)、IM (Instrumentation and Measurement)で行われています。また、国際的なシンポジウムについてはボーランドのプロテッサ大学で始められたプロテッサシンポジウムやスイスのチューリッヒを主体に行っているシンポジウムがございます。

また、米国、英国、フランス、ドイツ、インドでも活発な活動が行われています。最近では、中国が強い関心を持っている。また、日本では、EMCIAが活動を行っています。

このようにEMCについて学会で学問的に取り組まれていますが、しかし、現場では学問的取り組みの比重は小さくなり、今困っていることは、差し当たるどのように対策すべきかということが求められます。

そして、EMC教育について考えてみると、EMCの対象分野は広範囲で、これを取り扱うには、まず初めに分類が必要となります。EMCに関する種々の状況が相互にどのような関係にあるかという分類を十分に行う必要があります。

現場は例座の対応が求められ、理屈なんかどうかでもいい、とにかく何とか解決することが求められ、電磁気学や回路学の本を読んで良いと言っても間に合わない。その辺から持ってきたデバイスをくっけてみる、そして色々やっていると何かなるといった状況があると思います。

このノイズの問題は毎日過酷さを無視されるといいますが、どうこううまくいったのかを議論することが非常に難しいということは、この分野がすでにないことに原因があると思います。このような歴史
的背景が、ノイズの問題は学問ではないといっても Dancing しまえずまではありませんが、現在はそのようなわけではないです。現実を直視しなければならない状況もあります。文化の違いにも違いがあります。例えば、質問されたときにノーと言わなければならないときに「良い提案ですね。考えさせてください。もう少し明日お返事できるか知りません」と答えるのと、もっと欧州的に「ダメだ」と二言断するのどっちがいいでしょうか。文化の違いによりこだわるののがあります。

欧州における EMC 教育の現状ですが、残念ながら悪い状態です。電子工学技術者や物理技術者に EMC に関する知識が十分ではありません。オランダでは一般的な教育しか実施されていません。

近年におきましては、EMCに関する本が発表されるようになりました。私が知っている中で一番良い教科書としては、フィリップス社の社員で、CISP/SC-Aで活躍されているMr. J. J. Goedbloed が書かれたものです。

5年前からフィリップス社内の教育をこの先生が始められました。いくつかのビデオテープも教材として作成されています。このテープを使ってフィリップスの組織において EMCの基本を教育しています。

この教材は社外でも評判がよく、オランダの2つの大学においても用いられることになりました。

EMC 教育について、ほとんどの技術者は原則は分かっています。すべての学生が既に大学に入ってくる時点で電流によりかならず電磁界が発生することは分かっているわけです。また、大学においてもそういったことを学ぶのです。しかし、電子技術者として教育が終わって回路基盤を設計し始める段階では、学んだことは忘れてしまいます。

回路のことばかり考えてもこの回路基盤上の電流が電磁界を発生するという事を忘れないようにです。こんな単純な基本的なことを実地に適用しなくてはいけないことを知らなくてはいけません。

もう一つ学生から誰でも知っていることですが、電流はクローズドループでしか流れることができないということです。

したがって試験機器において一つの線路に電流があった場合は、この電流は戻ってこなければならないうえです。すなわちクローズドループが必要です。そうでないと電流は発生しません。ところが多
くの学生は、これを忘れてしまいます。

単に設計の際に、線路内の電流だけを考えるわけ
です。電位放射などは計算しますが、この電流はか
ならず戻ってくるなど、考えなければならないというのを忘れ
てしまいます。

基本的な事項をたたきこむ必要があります。この
物理学的な原則を知らないと日々の仕事ができませ
ん、これがなければEMCはもはや問題にならない
と思います。

佐藤 有難うございました。フィリップスではEMC
の社内教育用の教科書を作っておられるとのこと
でした。日本におけるEMC教育について日本電力の
鈴木さんに一言お願いいたします。

鈴木 日本電力の鈴木と申します。私のところでは、
EMCに関する定期的な教育は行っていないのです
が、ある程度新人社員がまとまった時点、2年とか
3年とかの間隔で半日か一日程度のEMC教育を実
施しています。

その教育にずさわっていたときに感じたのです
が、技術者からの質問は基本的な技術的な質問よ
り、規格がいつも強調されるかという質問が多く
あります。EMC対策として基礎的なことを何も理
解していなくて、付け焼き刃的なことをやってい
る。それがまず問題ではないかと思います。ただか
にEMCというのは広い学間分野を扱っていますので
で、得手不得手があるのは事実なんですが、その基
礎をもっと勉強してきてくれたら良かったと思うこ
とがあります。

また、教える側の立場でも、実際全ての分野につ
いてよく分かっているわけではないので、できれば
会社で教育にたずさわっている人を教育してくれる
ようなセミナーとか、大学で特別な講座をもってい
ただければ企業内でも、また、再教育の場でも使え
るのではないかと思います。

佐藤 有難うございました。他ご意見はございま
せんか。はい、NTTの徳田さんどうぞ。

徳田 NTTの徳田です。高木先生、フローリックさん
そして鈴木さんからお話しをお聞きしまして、実際
にEMC関係の仕事をして、教育がたいへん重要で
あると考えています。

NTTでもEMCの社内教育として完全に確立して
いるわけではありませんが、規格等に関してはガ
イドラインを作って一冊の本にまとめ、関係者に

配っています。

そういう観点での努力は学会でも行っていますし、
セミナー等で実際にEMCにたずさわる人への
教育に重点を置いております。やっていないようでも結
果的には成り立っているように思います。

それで、教育というものを考えた場合に一般の人
々への教育ということでも大事ではないかと考えてお
ります。

特に、フローリックさんのお話で、EMC指という
いう形で欧州全体の中をコミュニケーションや労働者といっ
たEMC関係の規格を整備していくときに、その意味
を関係者ばかりではなく、その商品を購入する人
も認識していることが重要であると思います。その点に
てパネラーの皆様のご意見をお聞きしたいと思います。

佐藤 有難うございました。EMC教育について各種の
ご意見をいただきました。いま一般の人々への教育
について問題提起が行われましたが、その点につい
て郵政省のご意見をお願いいたします。

菊池 いま、座長の方から問い合わせられたわけで
すが、私自身この問題を担当して日が浅いんですが、
この問題の入り口をのぞいたときに、全然奥が見えてこ
ない、しかも先ほど高木先生がおっしゃったように
幅が広く、社会現象を電気で置き換えられているEMC
となり、その一つ一つが専門的であると同時に
に、非常に幅広いたいへんな問題であるという感想
を持った次第です。

さきほどNTTの徳田さんから私が逆に問題提起
をしたいと思っていた部分をしていただきました。私
どもに対してこの問題は地方電気通信局局に設
けている相談窓口にいわゆるトラブルの苦情相談の
ような社会現象として現れてきており、その相談

（菊池 紳一 先生）
EMCCレポート

が段々と増えてくることを考えますと、規格・規制を行うとともにEMCに関する周知、啓発が重要となってくると思われます。

EMCの問題を社会現象として一般に理解していた人にはどのようにすれば良いか、より専門的な部分を追求していくと同時に社会に対してこの問題を認識してもらうという、その両方の観点から対応することが重要と思っております。

不要電波問題対策協議会での今回の講演会のような広報活動は様々行われていますが、一般の人々の理解を深める点では模索している段階であり、皆様のお知恵を拝借したいという気持ちで一言でございます。

佐藤 有難うございます。時間もかなり経過しましたのでまとめさせていただきます。EMCの問題は範囲が広くてあらゆる産業に関係しております。また、EMC問題は体験を通じて解決をしていくことに重点があり、もっともっと経験を積む必要があります。だから大学の先生もおおいに経験を積んでもらう必要があります。

また、基礎学問をしっかりマスターする必要がある。これも非常に難しい問題で、今までの学問は、物を大量生産するための学問を教えたわけですが、こういう環境問題についての学問の基礎は欠けてないわけで、そういう点が非常に困難な問題だろうと思います。

そうしているうちにどんどんノイズが増えてきます。この間、都内の一週間分のノイズを全部連続的に測定して、そのピークを見せてみると放送電界より高くなっている。昔は低かったんですが、現在は瞬間的であるが放送にも妨害が起きているわけです。瞬間的ですがったんだ電磁環境が悪くなっていることがはっきりしました。郵政省にも環境の把握をお願いしてもらう必要があります。

また、EMCに関するトラブル事例を集大成し、大学で整理・分析していく必要があります。ケンブリッジ大学の教授もEMCの教科書を書いておりますし、昨年のイタリアを訪問したときには、ナノ教授から教科書をもらってまいりました。そして、フィリップス社でも本があるということでそのままものを集め、勉強し、当協議会で整理することも必要です。

そして、技術者を訓練する学校を作ることもこれを機会により前向きな対応が必要と考えます。

次に妨害波の規制についてどのように取り組むべきか、杉浦さんからお願いいたします。

(2) 妨害波規制について

杉浦　我が国の妨害波規格はCISPR規格を基本的になし入するような方向にあり、電波法、電気用品取締法で法規制、VCCI規制により自主規制を行っております。

これからますます国際化していきますが、輸出入を円滑にするには規格の統一化が重要であり、まず技術基準の統一をし、次に規制方法の統一があります。

(杉浦 行 先生)

今年8月に米国でEMCのシンポジウムが行われましたが、その時にFCCのウォール氏からここにいらっしゃる岡村さんにお聞きになったそうですが、米国はEMC規制の相互認証に関して必要となれば海外の機関からのデータも受け入れます。日本では自主規制を行っていますが、そんな形で政府が関与しないと他の国と話すときに問題があるのではないでしょうかという話がありました。

私も結論は無いのですが、ECから見ると自主規制というものがどのように見えるか、VCCIで合格したものがECでそのまま通るか、今後、相互認証の問題でかなりこれから問題が発生するかもしれない。フローリック氏はどのようにご意見をお持ちか教えて戴きたいと思います。

フローリック　もちろん、私は業界の代表としてまいりましたが、同時に欧州における立法化の傾向も観察しつつしてまいりました。

イミュニティに対する業界の対応については、イミュニティは品質に関連しており、政府に関連することではなくあくまでも企業同士でオープンな形で競合すべきであり、品質の問題であるとの認識です。

しかし、テレビ、ラジオやそれに類似したものが
市場で大規模に使用されると苦情が大々的に増えてまいりました。そのとき、苦情に対応したのは政府でした。

政府の専門家が苦情が寄せられた家庭を訪れ、調査し妨害発生源を調べたわけではないのが、多くの国では政府自ら調査費用を負担しなければなりません。そして、妨害源が見つかっても往々にして、妨害源はCISPRや国内の許容値内でありました。

そうしますと、政府としては業界に紳士協定を結ぶように働きかけをするようになりました。テレビ、ラジオの苦情を低減するため、最低限のイミュニティを持つように相談が持ちかけられ、それは妥当性があるということになりました。だから先ほど申しましたが、政府は関係無しというテレビ、ラジオ以外は関係ないということになりました。

次の分野として苦情が増大してきたのは、情報技術装置でした。例えば通りの向かいの店でキャッシュカードを使う店に銀行のコンピュータのメモリが無くなるということがありました。そこで、再び政府の方から業界に依頼し、このまま放置はできないので、自主協定を結びました。そして、イミュニティの規制がテレビ、ラジオだけではなく情報技術装置にも適用されたわけです。

現在では、どのような電子製品にもマイクロプロセッサが使われる時代ですので、次の段階は他の分野にもイミュニティの要件が必要となるでしょう。

例えば、移動電話ですが、非常に大きな電界を発生します。住宅、企業、病院等あらゆるところでの電磁界が発生します。そういったときには最低限のイミュニティに関する必要事項が出てくるわけですね。もし企業がその要求を満たしなければデメリットがそれなりにあります、という方は妨害が出るからです。妨害を防ぐ手段を講じない企業は市場から除かれてしまいます。

私は、企業の立場として少なくとも政府による最低基準の設定が必要だと思います。世界中に最低基準は必要だと思います。そして、それらを上回るところでは競争し、性能、コストで競争するわけではないです。

佐藤 損害さんはこの問題についてどう考えますか。

菊池 先程の杉浦さんから提案された製品の見解でございますが、日本としてはCISPRの国際規格を取り入れて最低限の物は無制限で変わっております。したがって強制規定下では全て解決できることのないという問題も確かにあると思います。

先ほどフローリックさんからイミュニティの話がありましたが、科学技術は急速に進歩していきますので普通的なことは極めて難しいですが、ある程度の時間に亘ってもっと守っていかなければならないベースラインのようなレベルはだれが守れないのであると思います。しかし、それ以上の部分を強制していくと世の中がどんより変わるような問題が起きるかも知れません。そのため、関係機関から意見を開きながら、妨害の問題は従来の経営線上で対処したいと考えております。

また、イミュニティ一般については、我々も取りかかったばかりで、国際的な基準もこれから進んでいく分野でありますので、よく様子を見ながら対処しようと思っています。

佐藤 有難うございました。この問題はなかなか難しい問題でございます。時間も迫られてきましたのでこのような議論が必要だと思う思います。次にイミュニティの問題に入りたいと思います。

先ほど、フローリックさんからも非常に重要な問題であるから最低限のレベルは決めなければならないうのでご指摘がございます。最近のイミュニティ問題について岡村さんからご意見をお願いいたしました。

(3) イミュニティについて

岡村 イミュニティ問題は果たして政府が関与する問題かどうかいうことがあります。

例えばテレビの送信機があって10kmと40kmの地点で妨害を受ける受信機があった場合、同じ妨害レベルであればD/Uが違うことから、送信アンテナに近い位置で受信するテレビジョン受信機では、イミュニティレベルが低くとも問題は少ないと考えられます。このような事例から全ての受信機について十分なイミュニティ能力を持たせるための費用をかけるのは、どうであろうか。

それから、受信機以外のもので、静電気放電や放射性磁界、伝導性等色々が、それらに対する適時作動基準はどうするのか、使用する環境。例えば、伝導性の床の上で使う場合には、静電気放電特性が多い問題で大丈夫と考えられる。そのような性能問題から考えると、製品を選ぶのはユーザであるからとの判断から、市場において淘汰、決定されるので
佐藤 有難うございました。この問題について、再度、岡村さんからお願いいたします。

岡村 この問題について、諸外国では様々な対応を行っています。

米国はテレビ受信に対して妨害がないのであれば業界の自主基準に任せる。もし何かあれば政府が対応するという形になっている。カナダでは、まず電磁環境の調査を十分実施して我々の生活環境にどれくらいの電磁波レベルが存在するかを調査し、それに耐える装置を製造するよう要望しております。ただし、生命、財産に直接影響するような装置は多少スピアな基準を満足する必要があるという形となっていて、ドイツは比較的厳しい基準を作っております。

基本的には一つのガイドラインがあって、仮に何か問題が起こった場合を想定し、妨害発生源が無線局の場合は周波数、レベルが管理されていることから、そのような管理されている電磁環境のなかに物を置いて誤動作を起こすものであると問題となる旨で、即ち、ある程度業界が自主的に基準を作ってその規格をクリアするものを作ってくださいということはフローリックさんがおっしゃるように必要かも知れません。したがって問題が起こらないように業界が対応してくれることが一番ですが、それでも対応できない場合は何らかの形で政府が関与しなければならないのかなという感覚を持っているですが、まず業界問題の無いものを作ることが最初だと考えております。

佐藤 有難うございました。この問題について、高木先生、何かご存知ですか。

高木 イミュニティ問題には種々の側面があり、どのように規制をする必要があるかの議論がありますが、その前にイミュニティを評価する技術を確立することが重要であると思います。共通の基準があると競争が成り立つと思います。

イミュニティを規制する技術の競争原理という面では悪になることもありますが、逆の場合もありますが、根源的には測定法つまりイミュニティをいかに評価し得るかということが基本的な問題と思います。

佐藤 有難うございました。この問題について、フローリックさんからご意見をお願いいたします。

フローリック 私は、このような議論のなかで一般大
衆もEMCについて理解を深めるようにすべきであると聞かせてうれしく思いました。これはとても良いことだと思います。というのは、安全性を考えた場合、台所にあるメキサーといった家電製品を電源につながったままで水の中にいる人はいません。誰でもそれが危険であると知っています。ある程度電気についての安全性という観点から理解しているわけです。こういった中でメーカーとしても一般の人々にEMC問題を意識してもらう必要がありません。例えば使用説明書に述べられるべきです。

そして、ご承知のように皆様お持ちのテレフォンカードを磁石のそばに置いたりだめだということはわかっておられるわけですが、これが一般教育ができている。ところがEMCに関してはどうもできていない。できる前に製品がどんどん増えてきたように思います。

そうするとイミュニティはある程度決めておき、政府若しくは工業会ベストで行わないといけないからです。これからの、無線機が急速に増加しました電子機器も急速に普及しておりますので不意にコンピュータが誤動作して暴走するかという可能性は十分可能性はあるように思います。そのため、一般教育と、イミュニティの基本レベルの確保する手段を考えてなくてはならないと思います。

佐藤　有難うございました。たいへん有意義なご意見をいただきましたが時も深まるので終わせていただきたいと思います。

この電磁環境問題は悪化の一途を辿っており、障害も増えてきているわけですね。皆さんは日本のように冷たい水は持っていかないけれども、最近各家庭には浄水器が取り付けられています。それ位に日本の環境は悪くなっていているわけではない。電波も同じで、政府もメーカーも対策を行わないのであれば、自分で判断してシールドールームでも作って住まなければならないということもありますいうちに多くいるわけですね。ですからコンピュータをたくさん持っている会社などは自らシールドールームを作る必要があると思っているところもあるようですね、問題はたくさんあるわけです。

科学技術は役に立つけれども、かなず略期待を裏切ることがあります。ある程度は自分のことは自分で身を守らなければならないようなんでもあるし、そのようなことをしなくては十分に暮らせる様にしなくてはならないこともあり問題は複雑ですね。

この問題はますます悪化すると思いますが、そのため当協議会においてもこの問題を前向きな方向で取り扱って一歩一歩前進していただきたいと思います。

最後にフローリックさんを始めパネラーの先生方並びに討論に参加していただいた方々に感謝いたしまし。
アメリカにおけるEMCの概要

東京農工大学工学部教授
仁田周一大

今年の7月と8月、文部省の短期在外研究員として、コロラド大学ボルダー校に約40日間滞在した後、ニュージャージー州のテリヒールで開催されたIEEEのEMCシンポジウムでの論文発表、聴講、および2～3の大学訪問をした。

ここに、アメリカでのEMC研究の一端を紹介し、私の感じたことを述べてみたい。

従来、アメリカのEMCは、軍の主導による研究の推進とコンサルタントによる実務面での指導が主たる活動であった。このことは、シンポジウムの開催・運営におけるコンサルタントの役割が大きいことからも伺える。

本来、EMC技術は、ラジオの受信障害、計測信号の精度低下および機器やシステムの誤動作などを抑制するイミュニティ向上であったものが、半導体技術の進歩、特に高密度実装とそれに伴う高速化・小型化および低価格化などによるデジタル機器の普及が促進され、そこから放射される不要電磁波が社会生活に影響を与えたことから、放送ノイズにその中心が移ってきることと、その規制を制定が産業界のEMCへの関心を引き起こし、また、EMCビジネスが盛んになるにつれて、主たる活動が必ずしも軍やコンサルタントだけではなく、産業界、研究所、大学が研究や技術開発に参画したことにより、広範な研究が行われているのが現在のアメリカの状況だと言って差支えないと思う。

以下に個々の項目を挙げ、現状と問題点を紹介する。

○EMC問題のコンピュータによる解析

大型・高速のコンピュータが広範囲で使われるようになり、EMCの数値解析モデルの発展にはめざましいものがある。

すでに、有限要素法を使った電磁界解析用ソフトウェアが多発売されており、モーメント法を使ったEMC問題の数値解析法も数多く発表されている。

EMI源のモデル化、シールドや電波吸収体の評価およびESDのモデル化など、多数のソフトウェアが提案され、使用可能な状況にある。

今後、どのようなモデルがEMC問題に適用可能か？どのようなコンピュータ解析技術がEMC問題のそれぞれに特有な問題に適用可能か？などの議論が展開されるよう。

アメリカの大学のEMCへの貢献は、この数値解析の分野に対して極めて大きい。

筆者の訪問した大学でのEMC研究は、コンピュータによる数値解析が主であり（シンポジウムの論文からも、大学関係の研究は数値解析関係が多いことが判る）、研究室にはワークステーションがずらりと並び、その前で大学院生や研究者が懸命に頑張っている。しかし、大学にはEMCの実験・計測設備は見えない。

現状では、EMCに関する実験・計測データが充分、積み上げた段階にあらためて考えぬが、これらのデータは官の研究所や産業界で積み上げられ、大学での入力データとして利用され、解析結果は、また産官で実証されるという役割分担がはっきりしているように見える。

今更、言うまでもないが、アメリカでの産学の結びつきは強く、お互いに深く入りこんでいることはEMCの世界で例外ではない。

○トランジェント・オーバーストレスの問題

EMCの研究が放射ノイズとイミュニティに中心があることは言えども、オーバーストレスによる素子故障やシステム故障への関心が高まったことは出来ることである。特に、素子検査やシステム試験時のオーバーストレス、電撃などによる強電界へのシステムの暴露は内部に潜在故障を残し、故障の発生が、後になって表われることが多く、故障の原因究明が困難になることが多い。

信頼性工学分野では故障解析／良品解析技術の研究成果の発表が多く、地道な研究努力が進められている。

信頼性屋とEMC屋が協力し、“EMCと故障”の研究が推進されることを期待する。
○スペクトラム管理とEMC
昨年、ワシントンD.C.で開催されたIEEEのEMCシンポジウム開会式における基調講演はスペクトラム管理と決定に関するものであった。（米国商務省の）、法律に関する講演が、印象に残っている
スペクトラム管理と決定がEMC問題に、どのような影響を与えるかのケース・スタディが行われている。
今後、新しい周波数帯域を選択し、決定するに際し、現状および将来のRFI/EMC問題の解決方法を考えておく必要があるよう。

○MIL STD 461/462/463
一昔前、機器やシステムのイミュニティ・レベルを測定し、判定する唯一の機関所であったMIL-STD 461～3にも改訂の波が押し寄せてきた。改訂は、信頼性と試験方法を含め、全体について行われ、他の規定との整合も考慮されている。
このようなこともあって、EMCの限界学へ移りつつあることが伺える。

○タイムドメインと周波数ドメイン
ノイズによる機器やシステムの誤動作は、最終的にはノイズの波高値や立上り/立下り時間によって影響される。

○ZINDO
国でも、電気学会に“電磁波装置のタイムドメイノン計測技術調査専門委員会”（委員長：東北大学、高木敏教授）が本年度に設立され、活動を開始している。
現在、放射ノイズの測定・評価は周波数ドメインで行われているが、アメリカでも、EMC解析の基本に帰って、タイムドメイン信号の影響を周波数ドメイン上でのように解析すべきかを検討している。

○素子・部品への関心の高まり
従来、ICなど部品そのもののEMCについての関心はあまり高くなかったが。
しかし、昨年あたりから、MMIC（Microwave Monolithic Integrated Circuit）やVLSIから放射ノイズに関する研究が見られるようになり、ASIC（Application Specific IC）やECL（Emitter Coupled Logic）などのEMCに関する研究が、本年、発表された。

○その他
本年3月、チューリッヒで開催されたEMCシンポジウムでは、フィルタとバイオに関するセッションがあり、それぞれで多くの研究成果が発表された。
IEEEのEMCシンポジウムでは、昨年のフィルタの発表が2件あったものの、本年はなく、また、バイオの
発表も見られなかった。
フィルタについては、問題がほぼ解析したと考えてよいのか？
また、バイオについては、研究が続いたばかりで、顕著な成果が表れていないということか？
この2つの話題については、セッションが設けられなかった理由は、全く異なる背景によるものだろう。
以上、チェリーウェルでのシンポジウムを中心に、アメリカのEMCの概要について述べた。
以下、学問としてのEMCの体系化が強力に推進されるであろうが、一方、個々のケーススタディも長く続くであろう。
いつも感じることであるが、アメリカ人のタフさには感心させられる。
今回、チェリーウェルのシンポジウムではテクニカルセッションの最終日にアトラシティックシティへのツアーがあり、ツアー終了後のホテル到着は午前1時半であった。その前にはレセプションが深夜まで終わっていたが、彼等は、ツアーの翌朝7時には、ケロッグとした顔でやってくる。
我々も、このタフさを身につけたいものであるが、なかなか真似できない。
これについては、まさに脱帽である。

韓国におけるEMC事情と旅行記

1 はじめに

韓国電子通信研究所（ETRI: Electronics and Telecommunication Research Institute）の電磁波研究室室長・崔栄植博士からイミュニティに関して同所で講義するよう依頼を受け、さらに韓国電磁波技術協会（KEES: Korea EMC/EMI Society）の大会で電磁環境に関する講演を行うよう要請があった。今年9月に一週間同国を訪問し、同協会で講演をするとともに電子通信研究所の崔氏の研究室の力がとイミュニティを含めEMCに関して意見交換ができた。電磁波技術協会での講演、電子通信研究所の概要や研究所での講義のように、電磁波研究室の研究者との意見交換や会食をしながらの講話は、研究所に近い古都の旧跡を案内してもったときにソウルとETRIまでの往復時の印象、私が聞いた韓国の電磁環境に関する研究体制や取り組みの状況などについて述べてみたい。

2 韓国電磁波技術協会での講演

今回参加したこの大会は、韓国電磁波技術協会が主催、通信部および韓国電磁波産業振興協会の後援によるもので、1991年9月25日から28日までソウルの建設会館で開催された。初日は通信部長官（日本の郵政大臣に相当）や当協会の会長のあいさつなど式典があり、その後特別講演に入った。式典には長官自ら出席することからみて、政府がこの協会やEMC行政・研究・産業育成にいかに力を入れているかが察せられる。特別講演者は私のほか、この協会の主要構成員である大学教授、研究機関の研究管理者および企業の代表者の合わせて5名であった。特別講演用の立派な体裁の予備集（約80ページ）と演題、スケジュールを示すパンフレットが準備され、出席者全員に配付されていた。会場には200名近くの聴衆がいた。式典後、最初に私が講演することになっていて、与えられた講演時間は40分であった。私は「日本国における電磁環境の調査研究」と題して、これまでわれわれ研究所が実施してきた代表的な電磁利用施設について、その周辺地域（空間）の電磁環境測定と推定結果についてまとめたものを発表した。日本語で発表するのを次第韓国語に翻訳してもらった。通訳には今春まで早稲田大学通信工学科に留学し、卒業後、父親が経営
するEMC関連会社の職員として活躍している黄亭在氏が当たってくれた。彼がうまく説明してくれたお陰で発表も素晴らしい。聴衆は満足であり、彼の説明は感銘をもって受けた。次講演者である浦洋大学の李中根教授が、とても興味のある話であった。ときに下がありましたのに世辞的にもうれしかった。韓国でも電磁環境の実態を把握する研究は、5. 6の大学で検討していることをETRIの研究者から知らされ、演題の選定が的外れではなかったようで安心した。式典が始まるまで到達で休憩されていた通信部長庁や通信部電波管理部長、通信部電波研究所所長など政府幹部および協会幹部と同席した私のそばに黄氏がいてくれ、そこで交わされている会話は遂に通訳してくれた。韓国の要人が電磁環境に真剣に取り組んでいるようすがよくわたった。午前中に私の講演が終わり、室長、室員、黄氏らと食事をしていたら、韓国電波研究所の職員が来て、電磁環境の測定方法などについて熱心に質問された。昼食後の休み中に、尹賢甫会館長（東京大学教授）、慎重情報学科学生課員長（浦洋大学教授）、朴成民電波監理局長、林延宰電波研究所所長、李中根教授、鄭榮三韓国標準研究所電気研究部長、電子通信研究所の室長ほかの皆さんに一線をに入って頂き、会場となった建設会館正面で記念写真を撮った。（写真1：協会幹事の皆さんと）
この協会の活動、現在の状況について室長が説明してくれたところによれば、韓国には歴史的かつ最も古い「電子工学会」があるが、これは別にETRIを中心に韓国の研究機関、大学関係者でEMC/EMIに関心をもつ人々が、EMC企業体を啓蒙、教育しようとしてこの学会の前進である「電子波工業会」を4年前に発足させた。昨年の末に、工業会寄りではなくもっと学会色を強めようとする動きが出て、昨年から現在の協会名になった。しかし、企業が本当に解決して欲しいEMC問題、EMC技術に対し、大学側が適切に対応しきれないところに企業側の不満があることや、通信部はこの協会をさらに発展させてさらに学術的な「電波工学会」にしたい意向もあるとのことであった。現在の会長は浦洋大学の崔哲宰教授である。昨年は千人の大会を一回開催し、日本からは、アクソ・ジャパン株式会社の池田正男氏が招待され、ECの最近の動向について特別講演を行った。本年は既に春にも大会を開催した。この学会の会員数は400名程度で、参加組織の内訳と割合は企業60%、大学20%、研究所が20%である。代表的な企業としては三星、金星、現代などがあり、通信会社には、韓国通信、移動通信、データ通信などがある。代表的な研究施設は、電波研究所（RRL）、電子通信研究所（ETRI）、標準研究所（KSRI）、生産技術研究所（KAITECH）などが含まれている。幹事会員は40名で、各組織に割当がありETRI、KSRIはそれぞれ2名である。

3 韓国電子通信研究所での講義

韓国電子通信研究所（ETRI）はソウルから鉄道で約170km南下した忠清南道の道庁所在地大田（テジョン）市に属している。大田駅から西北へ約10kmの所に、韓国でも代表的な温泉街である鍾城（ソン）がある。ここからさらに2、3km北西に学園都市が訪れている。エソンから学園都市に入ると最初に韓国工科大学（KIT）があり、その他数カ所に分散する研究所らしき建物を通過したものの末にETRIがある。韓国標準研究所（KSRI）もETRIから徒歩で5分位の所にある。学園都市全体としてはまだ建設中で、道路の舗装もまだ完全ではない所がある。そこで1993年に万国博覧会の開催が予定されている。まわりには遠く山が見え落ちた雰囲気である。冬には零下25度になり雪も相当積もるそうである。
さて、ETRIは1976年に商工部の基に設立された韓国電子技術研究所（KIST：Korea Institute of Electronics Technology）と1977年に通信部の基に設立された韓国通信研究所（KTRI：Korea Telecommunications Research Institute）が合併して1985年に電子通信技術の基に設立された。ETRIは政府の支援によって、電子通信、コンピュータ、自動制御、半導体等の分野を
総合した高度情報技術の開発研究を目指している。研究資金は、科学技術部、連絡部、通信部が資本の過半数を保有する企業「韓国通信」、その他の企業から出しており、従ってこの研究所の職員は国家公務員ではない。ちなみに、同じこの学問都市にある韓国標準研究所も科学技術部から半数の予算が出ているがこの研究所有は纯粋の国立機関ではない。国家公務員よりも処遇を良くして人材をよく求めるようとしている意図がうかがえる。ETRI の全職員数は 1800 人程度である。研究棟は 6 棟あり敷地はかなり広い。

今回訪問した電磁波研究室 (Radio Science Section) は電気通信技術部に属しており、室長の崔英柱博士はか 8 名の室内員で構成されている。このうち 5 名が E M C 関係、3 名が移動通信関係を担当している。EMC のグループでは①測定方法及び自動測定、②障音、防振震低減（シールド、接地）、③電波防護指針関連、④電磁界解析等をテーマにしている。現在、通信部から EMC 関連測定法を開発するよう要請があり、来年度からは新たにイミュニティの研究予算を分担されようである。通信部からの信頼も厚く、EMC に関しては韓国内で最も実力があると崔室長は自負していた。室員全員が博士で、研究もよくやっているようであった。例えばある室員は、私が TEM セル内のパーソナルコンピュータのイミュニティについて講義をすると、その後 TEM セル内の電磁界分布をモニメント法で解析した自分の論文をくれたり、高い周波数でイミュニティが低下する原因の可能性を示す最近の外国文献を紹介してくれたりした。

一方移動通信伝搬関係のグループでは、大都市における 800MHz 〜 1GHz 帯の人工雑音測定調査を行い、振幅確率分布、交叉率等のパラメータで評価する構想をもっている。また移動通信伝搬では、伝搬損失特性と多重路伝搬特性の測定実験を検討中である。後者については、われわれの研究所の水野通信系研究所長が今年 ETRI に招かれ、移動通信伝搬を講義したことが大きいに参考になっているのである。

私の講義は 3 日間であったが、初日の半日は朝採りを案内してもらったし、後の日間は ETRI の電波暗室の見学や上席日がであったこともあり、実質の講義はまる 2 日間であった。ETRI の要請により、イミュニティに関して、国際基準の動向 (IEC, CISPR, CCITT, ECなど)、日本の関係工業会の動き、測定法および測定の実際上の問題点等の解説を行った。しかし、とても

この期間中に消化することはできなかった。辛いこ らの資料をあらかじめ準備して差し上げていたので、 時間が足りなかった部分は概略説明し、後でよく検 討して頂くことにした。韓国は IEC には加盟してい るが、ETRI には CISPR も含め、国際機関の情報は 入らないようで、準備した資料は大変喜んでもらえ た。初日の半日は黄氏が同伴してくれたが、彼はその 日の内にソウルへ帰らなければならない予定があった ので、二日目からはすべて私の慣れない英語による発表となった。英語がすっかり思い浮かばず、「質問」とか「答申」とか「聴聞」といった術語は漢字で紹介した。ほんほど理解してもらえるようで、近い文化をもつ国であるだけに、こちらもかなり助けた。講義室は 研究室と隣接する別棟にあり立派な施設であった。講 義室が狭いがまだそれがあまり利用されているよう で、研究活動が活発であることがうかがえた。初日は ちょうど ETRI の電波暗室の特性評価試験の検査に来 ていた韓国電波研究室の職員数名の参加や、物植しさ めためか他の研究室の参加もあって、約 20 数名が出席 した。彼らは熱心に聴いてくれ、また多く質問をして くれた。皆さんが KSRI から二日間通して出席して 下さい研究者には、頭の下がる思いがあった。写真 2: 崔室長および電波研究所の検査職員と

一方研究室内部のようすについて述べると、個人の 席はそれぞれボックス型のコーナになるよう、しゃれ た書棚と机で仕切られており、各人の席には一目でず パソコンがあった。部屋には研究補助員と思われる若 い女性がいて、彼女にコーヒーとかワープロ打ちを随時 頼めるようであった。私が訪問するニッケ前 PAY, 要請 に応じて送付した我が国の電波防護指針を韓国語に翻 訳し、立派な体裁の本に仕上げていたことは、この研
４ 韓国の他の研究機関

ソウルの協会の下でお会いした二三の研究所の方から、日本の電波防護指針の資料を欲しいと願まれた。韓国でも電波防護指針に対する関心は相当高いようである。

ERTIでお会いした韓国電波研究所の検査職員の話によれば、韓国電波研究所は、近いうちに電磁波研究所、宇宙通信研究所を合わせて6つの研究所で構成される「電波研究院」に昇格し、本部はソウルに置く計画があるとのことである。また、電磁波研究所はソウルから80km離れた場所に30万坪の土地が既に確保されており、オープンサイトの建設も今年度から開始する予定であると聞いた。

ETRIのそばにあるKSRIを見学したが、ETRIに招待されている以上、そのことをこちらからは言い出せなかった。最後の日、KSRI前を車で通ってもらったときにちょっと見した感じでは、全体に建物の規模はETRIに比べてこんこんしていて印象を受けた。その他、韓国には通信部に関係する通信開発研究院（KISDI）、商工部が機械する生産技術研究院（KATECH）、科学技術庁の管轄と思われる電気研究所など多くのEMC関連の研究所があるようである。機会があれば、改めて系統立てて組織を調べてみたい。

５ 韓国の旧跡、田園風景、食べ物

ETRI訪問の初日の午後は、室見二人に案内されて、ユソンから約20km西北にある公州市の武寧王陵と国立公州博物館を訪れた。公州（コンジュ）市のはずれをとうとうと流れる錦川（川）に沿って南西に30km程度下った所にある附佐（ブヨ）の町とともに百濟の王都であったと、車中で聞かされた。とっさに非上塗の小説「談田王」のなかに日本と百濟の連合軍が唐・新羅連合軍（はくすうのえ）の海戦で打ち破られたことの話をした。彼らもこぞっていた。この錦江の河口が白村江であったのである。6世紀の百濟武寧王陵（古墳）は市の中心街からすこし離れた小高い山の中腹にあった。この王陵は20年前に発見されたもので、学術的にも価値が高いらしい。小学生一行に出会い毛が立った。

公州博物館は公州近郊で見られた遺物のみ対象としているのか、小さな建物であったが、古墳時代の精巧な装飾品、仏教などかなりの国宝級の展示物があった。さて、話を戻す。協会の大会終了後、ソウルからユソンまでは黄氏の車で向い、途中サービスエリアで休憩した。ウーロン茶を探したがどの自動販売機にも売っていない。やはり日本と違うのだろうかと思う。
さんが熱々の胡桃入りあんこの一口饅頭を売店で買ってきたはすめしてくれた。これがとてもうまい。この饅頭だけは韓国のどこのサービスエリアに行っても必ず売っているそうだ。それを頬張りながら、夕焼け空にくっきりと映えた韓国の山並を見ていると、美しく穏やかな所だなぁと多少感傷的になる。途中いくつかの田園と農家を見た。農家の屋根がそり上がり、母屋を中心に左右に別棟が寄り添っている。これが韓国なのだと感じる。夜ユソンの街に到着した。翌朝早く昼食とホテルの地下にある温泉大浴場に入って見た。湯量も多くとてもいい湯であった。

最終日の帰路は大田駅から終点ソウル駅まで韓国鉄道庁自慢の特急セマウル号に崔室長とともに乗った。架線が見当たらない。開閉軸はジーゼルらしい。しかしこれ1時間半の快適な旅であった。ここでも十分に韓国の田園風景を満喫できた。

韓国で困ったのは、ハングル文字が全く読めないこと、ほとんどどの食べ物が香辛料が剣けすぎて口の中がまるで火事場になることであった。しかし、韓国に来ている間は、ガイドブックを参考に本場料理に挑戦するように心がけたが、ハングルは頭が固いため、ポケット会話集は役立たずに終わった。

6 おわりに

はじめて一人で韓国を訪問し、ETRIの人びとはもちろん多くの人達から、好意をもって迎えてもらえたことは、私にとってとてもよい印象を受けた。研究室の室員はみんな誠実で従順だった。空港に迎えにくれた崔室長とは再びここでの別れことになったが、別れ際に今後とも協力していこうと堅い握手をされ、来た甲斐があったとの思いとともに口頭が熱くなった。

韓国の「韓国電磁波技術協会」は、日本での李は「不要電波問題対策協議会」に近い性格のものではないかと思う。いろいろ共通した話題があり、互いに参考になることが多いのではないか。今回訪問したことが今後両者間に交流ができる切っ掛けになれば望外の喜びである。
平成2年度における
不要電波障害申告状況について

郵政省では、各地方電気通信局等に寄せられた不要電波に関する苦情申告について定期的に本省に対し、その障害の概要と件数についての報告がなされており、本省及び各地方の電磁環境対策室においては、その把握と各種の対策を講じております。

EMCC レポートでは、毎年その申告の概要と件数について状況報告と共に考察を混じえ掲載してきたところですが、第6号では、障害の概要をより実情に近い項目に整理して、平成2年度におけるまとめを表に示しました。

もちろん表に計上されている申告件数につきましては、全国の不要電波障害の全てを表すものではなく、障害を受けたユーザーが、自主的に申告を寄せたものであり、当然のことながら国内における不要電波障害の総件数を表していないものです。潜在的には、かなりの障害があるものと思料されることから、表に示した申告件数は、まさに浅田の一画にしか過ぎないものと思われます。

さて障害事例と申告件数をみてみますと、例年のごとく、電話機に対する障害が全申告数の約5割を占め、次いでラジオやテレビ等の放送受信機に対する障害が多いことがわかります。原因は、不法ハイパワーCB無線やアマチュア無線等の電波が混入したり、これらの電波によって本来の機能を維持できなくなり誤動作を引き起こす事例が、そのほとんどであるようです。

電話機に対する障害申告の内訳をみますと、中でも無線局間の通信（会話）が直接受信機から聞こえるというもののが一番多く、次いで電話機の機能の誤動作（かってに呼び出音が鳴る、回線が断となる等）が多いようです。

また、テレビ・ラジオ等の放送受信機に対する障害では、電話機と同じように無線局間の通信（会話）が聞こえたり、テレビ画像の乱れが主であるようです。

これらの障害申告件数が多いのは、例年同一傾向であり、依然として解決されていない状況が伺えます。

これらの障害申告事例の他には、オーディオ機器等のアンプ関係等の障害申告、有線放送等への障害申告、また各種電子制御機器への障害申告が多数計上されており、電話機及び放送受信機への障害申告と併せ、不要電波障害申告の主な部分を占めています。

障害申告の総件数については、昭和63年度が501件、平成元年度が755件、そして平成2年度については874件と増加の傾向を示しておりますが、障害申告の事例についても各種電子機器の複雑化・高性能化によって、その形態も多様化してきているようです。

このような状況に鑑み、不要電波問題対策協議会では、現在電話機に対する障害削減策構想のため、イミュニティ委員会において電話機イミュニティ測定作業班を開催し、イミュニティの測定法の検討を進めておりますが、さらに郵政省では平成3年10月に行う電磁環境の統計的把握に関する調査研究を開催し、具体的にある地点（当面東京都内）における各種の電子機器あるいは通信機器がさらされるであろう電磁環境を把握し、それらの機器に要求される適性イミュニティレベルの基礎データを得ることとしております。

これらの検討によって、イミュニティ向上のための取り組みがより一層強化されることにより、不要電波による障害の軽減が図られるものと考えられます。

郵政省では、不要電波問題対策協議会での取り組みに倣い、監視調査部門による根本的な対策である不法無線局（27MHz帯ハイパワーCB、不法アマチュア無線等）の取締りを更に強化し、少しでも不要電波の抑制に力を入れることとしております。

電磁環境対策室では、今後も上記の取り組みにおける障害申告の推移状況を分析しながら活動を進めてま
EMCCレポート

平成2年度不要電波障害申告まとめ
（郵政省に対する障害申告から不要電波に関するものについて抜粋）

一般的なもの

<table>
<thead>
<tr>
<th>障害事例</th>
<th>申告件数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 電話機に関する障害</td>
<td></td>
</tr>
<tr>
<td>内訳(1)不好CB無線、アマチュア無線及びその他の無線の声が通信に混入する。</td>
<td>3 3 2</td>
</tr>
<tr>
<td>(2)通話中に異音またはノイズが混入する。</td>
<td>4 5</td>
</tr>
<tr>
<td>(3)通話中にラジオ・テレビ等の放送波が混入する。</td>
<td>8</td>
</tr>
<tr>
<td>(4)電話機の機能が誤動作を起こす。</td>
<td>4 6</td>
</tr>
<tr>
<td>2 オーディオ機器、カラオケ機器、エレクトーン等のアンプ機器に無線等の音声又はノイズが混入する。</td>
<td>6 7</td>
</tr>
<tr>
<td>3 テレビやOA機器等のCRTモニタや縮小ものは映像障害を生じる。</td>
<td>3 3</td>
</tr>
<tr>
<td>4 テレビやラジオ等の放送波受信機に無線等の音声又は雑音が混入する。</td>
<td>9 4</td>
</tr>
<tr>
<td>5 インバータエアコン、ファンヒーター、自動給湯器、インバータ式蛍光灯等の家庭用電子制御機器が誤動作を起こす。</td>
<td>2 7</td>
</tr>
<tr>
<td>6 自動ドア又はシャッターが開閉等の誤動作を起こす。</td>
<td>1 5</td>
</tr>
<tr>
<td>7 電源遮断機、ブレーカが断とされる。</td>
<td>2 0</td>
</tr>
<tr>
<td>8 パソコン、ワープロ、コピー機、FAX等の機器が誤動作を起こす。</td>
<td>3 1</td>
</tr>
<tr>
<td>9 ポケベルが誤動作を起こす。</td>
<td>1</td>
</tr>
<tr>
<td>10 インターホン等無線の音声が混入する。</td>
<td>1 6</td>
</tr>
<tr>
<td>11 玄関チャイムが勝手に鳴る。</td>
<td>1 2</td>
</tr>
<tr>
<td>12 警報装置、防犯ベル、非常ベル等が誤動作を起こす。</td>
<td>1</td>
</tr>
<tr>
<td>13 測定系への障害。(誤指示、誤動作等)</td>
<td>5</td>
</tr>
<tr>
<td>14 ラジコン制御に関する誤動作</td>
<td>2</td>
</tr>
<tr>
<td>15 有線電気通信設備に対する障害</td>
<td>4 9</td>
</tr>
<tr>
<td>16 無線通信設備への混信</td>
<td>3 1</td>
</tr>
</tbody>
</table>

安全に関わるもの

<table>
<thead>
<tr>
<th>障害事例</th>
<th>申告件数</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 工場用機器の誤動作。(NC錠盤、ロボット等)</td>
<td>1</td>
</tr>
<tr>
<td>18 クレーンの誤動作</td>
<td>3</td>
</tr>
<tr>
<td>19 その他</td>
<td>3 5</td>
</tr>
</tbody>
</table>

総件数 874
編集後記

前回のEMCC レポート第5号の発刊（平成3年1月発刊）から、人事異動等による事務局発行のため長期間を要しましたが、ようやく第6号の発刊となりました。

今号では、去る9月に開催しました不要電波問題対策協議会第9回講演会の概要を主要記事として掲載いたします。昨年は、イギリスからCISPR委員長であるG.A.Jackson先生を招聘しましたが、今年度については、オランダからECにおけるEMCの専門家であるCENELEC-SC110A議長のM.C.Vrolijk氏を招き、欧州における不要電波問題について御講演をいただきました。

講演に引き続き、日本におけるEMCの専門家を含めたパネル討論会を行われ、記事として、講演と討論会の概要についてまとめられております。なお、講演会発表にあたり、御協力、御参加をいただきました皆様には、矢礼とは存じますが、当紙面を借りましてお礼を申し上げます。

またトピックスとして、海外（アメリカ及び韓国）におけるEMCの現状について、最近行かれましたお二人に寄せられていただきましたので、HOTな情報を収集して掲載いたしました。

EMCC レポート第6号の編集にあたり、事務局では、多数の方々に御協力をいただきました。事務局として心から感謝の意を表し次第です。

今後においてもできるかぎり皆様の要望に応えますよう努力してまいりたいと思いますので、何とぞよろしくお願い申し上げます。

※ 人事異動により次のとおり事務局長が変更となりました。
監視監理課長 石原秀昭 → 監視監理課長 菊池統一
※ 以下の不要電波資料に余裕がありますのでご希望の方は、下記までお問い合わせ願います。
・「不要電波問題に関する海外実態調査報告書」（平成2年7月版）
 ￥1,500(非会員)／￥1,000(会員)
・「CISPR ヨーク会議報告書」（平成2年12月版）
 ￥1,500(非会員)／￥1,000(会員)
・EMCCレポート第2号～第5号
 無料(郵送料実費)

お問い合わせ先
〒140 東京都品川区八潮5-7-2
(財)無線設備検査検定協会内
不要電波問題対策協議会 事務局 沼田/渡辺
TEL 03-3799-053 FAX 03-3799-9053

無断転載を禁ず

EMCCレポート第6号
平成3年12月18日 発行
編集発行 不要電波問題対策協議会
Electromagnetic Compatibility Conference Japan
〒140 東京都品川区八潮5-7-2 (M K Kビル)
(財)無線設備検査検定協会 内
不要電波問題対策協議会 事務局
TEL 03-3799-0053 FAX 03-3799-9053

--29--